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Abstract. Partitioning a set of discrete elements (such as people) into subsets of equal, or approximately5
equal, cardinality with a maximized diversity is a common problem. This papers describes an6
ecological equation known as biodiversity as a metric for use with Simulated Annealing. In order to7
judge effectiveness, we compared the above approach with a random match based on the score they8
received using the aforementioned biodiversity metric on multiple datasets. The Simulated Annealing9
algorithm, although computationally more intensive, resulted in significantly more diverse subsets.10
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1. Introduction. The problem with which this research concerns itself relates to the fol-13

lowing situation: a set of students will be partitioned into subsets of approximately equal14

cardinality. Each student has a list of qualities: school year, gender, mathematical proficiency,15

writing proficiency, interest in sports, etc. The goal is to create subsets of approximately equal16

(and known) cardinality so that the diversity of each subset is maximized. This is an NP-hard17

combinatorial optimization problem.18

Simulated Annealing (SA) is a computationally efficient and common approach for solv-19

ing combinatorial optimization problems [2]. Simulated Annealing, in order to be effective,20

requires a metric to be optimized. Simpson’s Diversity Index has long been used to quantify21

diversity in biological populations; we used this quantity as a metric for the diversity of each22

subset.23

This paper is organized as follows. Section 2 reviews the SA algorithm and Simpson’s24

Diversity Index. Our new algorithm is presented in section 3. Results for two different data25

sets are presented in section 4. And section 5 provides a summary of the performance of the26

algorithm and suggests future lines of work.27

2. Background. In this section, we discuss the SA algorithm and Simpson’s Diversity28

Index. We show how to use SA to create subsets with high diversity using Simpson’s Diversity29

Index in section 3.30

2.1. Simulated Annealing Algorithm. SA is a robust optimization algorithm that is based31

on the physical model of how metals cool [5]. In each iteration, the SA algorithm has a current32

solution and a proposed solution, which may be worse. Rather than accepting the proposed33

solution if it is better and rejecting the proposed solution if it is worse, SA accepts or rejects34

the proposed solution according to a stochastic formula. If a liquid metal cools slowly, its35

atoms form a pure crystalline structure, corresponding to a lower energy state. If a liquid36

metal cools quickly, its atoms do not have time to arrange themselves optimally, so the metal37
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freezes in a higher energy state. SA uses this model of cooling where the objective function38

represents the energy state. At each iteration, SA will usually choose a lower energy state;39

sometimes, though, it will choose a higher energy state40

Pseudo-code for SA is listed in Algorithm 1, where s0 is the initial state solution, T0 is the41

initial temperature, Tmin is the minimum temperature, and kmax is the maximum possible42

number of iterations at each selected solution. The larger kmax the more likely and optimally43

solution will be found, but the compute time will rise almost directly with it. The parameter44

α ∈ (0, 1) determines how quickly the system “cools”; the smaller the alpha, the quicker the45

convergence. However, a larger alpha permits SA to explore the parameter space more and46

possibly generate a better solution. The function AP calculates the acceptance probability,47

that is, a value in the range [0,1] that represents the probability of changing solutions. The48

random function, which outputs a random number in the range [0,1], keeps the algorithm49

from terminating at a local maximum, especially in early iterations.50

Algorithm 1 Pseudo-code for Simulated Annealing Algorithm

1: Let s = s0
2: Let h = objective(s)
3: Let T = T0
4: while T ≥ Tmin do
5: for k = 0 through kmax do
6: stemp = neighbor(s)
7: htemp = objective(stemp)
8: if AP (htemp, h, T ) > random(0, 1) then
9: s = stemp

10: h = htemp

11: break
12: end if
13: end for
14: T = T ∗ α
15: end while
16: Return: s

2.2. Biodiversity. In Ecology it is often useful to quantify the biodiversity of a habi-51

tat. Biodiversity is the the variety of organisms in a specific habitat or system. There are52

many mathematical models for calculating this biodiversity in a given area. Any method for53

calculating biodiversity is dependent on the richness and evenness of the population.54

The number of species per sample is a way to measure richness. The more species one55

sample has the richer it is. However, species richness on its own does not take into account56

the number of organisms in each species. There could be one species with 1 organism and57

another with 1000, and they would be weighted equally. For this reason, richness alone is not58

a satisfactory measure of biodiversity.59

Evenness is the measure of relative abundance of different species making up the richness60

of a sample. A sample is considered more even if the difference between the number of61

individuals in each species is less. For example, consider the samples in Table 1, Sample 2 is62
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Table 1
Biodiversity Example Comparing Two Samples of Two Species

Species Sample 1 Sample 2

Daisy 90 49

Sunflower 10 51

Total 100 100

much more even than Sample 1 because the difference in number of organisms between species63

is 2 in Sample 2 as opposed to 80 in Sample 1.64

2.3. Simpson’s Diversity Index. Separate numbers for richness and evenness can not be65

used as the objective function in SA. Instead, we seek a single number that quantifies diversity.66

As a species’ richness and evenness increase, so does its diversity. Simpson’s Diversity Index67

takes both richness and evenness into account in order to quantify biodiversity [4]. The68

Simpson’s Index of Diversity (SID) of a system, D is defined in (1) where n is the total69

number of organisms of a particular species and N is the total number of organisms in the70

system.71

(1) D = 1−
∑

(
n

N
)272

Using SID, the biodiversity is given as a number in the range [0, 1] where 1 represents73

infinite diversity and 0 represents no diversity. Using SID, the index represents the probability74

that two organisms taken from the population are of different species. In the order to maximize75

diversity of the partitions, this SID is what needs to be maximized.76

3. Theory. Our implementation of SA is similar to that which is outlined in section 2.1.77

We use a modification of the SID equation which is defined in (2) such that ai is the SID for78

the ith quantifier and n is the number of elements in the subset with the specified quantifier79

value and N is the cardinality of that subset, and wi is the weight for the current quantifier80

(n.b. all weights in each subset must add to 1 and quantifiers must be discrete measurements).81

The objective function, for the current subset g, is then calculated by summing these weighted82

SID’s. The set O contains all of these subsets’ objective values, which are then averaged to83

calculate the overall objective value for the current solution, s.84

ai = wi ∗
(

1−
∑

(
n

N
)2
)

O =
{
og : og =

∑
a
}

objective(s) = average(O)

(2)85

We define the acceptance probability function, AP , in (3). In this equation, h is the86

objective value of the currently selected solution, htemp is the objective value of the neighboring87

solution, which is to be compared to the current solution, and T is the current temperature.88

(3) AP (htemp, h, T ) = e
htemp−h

T89
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SA also requires a method to generate similar solutions, given one solution. These similar90

solutions are called neighbors. A major part of SA involves comparing the SID of these91

neighbors to the current solution, as to find the maximum SID. If neighbors are calculated92

incorrectly then SA will fail. Neighbors are defined by converting the solution into an n-93

dimensional vector, where n is the number of elements in the original set and each element of94

the vector represents the specific subset each element was partitioned into. Then, a β ∈ (0, n]95

number of elements are randomly rearranged with each other to create a similar, but slightly96

different vector compared to the initial one. This resultant vector is the neighbor for the97

SA algorithm. A smaller β value will result in a more conservative algorithm, resulting in98

solutions that are more similar to the initial one. A larger β, conversely, will result in an99

algorithm where solutions share little in common and a large enough /beta would result in100

a modified random search algorithm. Experimentally, we have found a β of approximately a101

quarter the cardinatily of the set to be optimal.102

4. Results. In the following subsections, there are results for two different problems. One103

concerning students, who need to be partitioned as diversely as possible into lunch table as-104

signments with known gender and age. This problem will be referred to as the “Lunch Table105

Problem” and is discussed in section 4.1. The other problem, a toy problem, concerns a106

business with one hundred employees of known age, gender, mathematical proficiency, pro-107

gramming proficiency, etc. It has been shown that there is a correlation between diversity108

and financial performance [1, 3]. The manager would like to partition the employees into ten109

teams of ten so that the teams are diverse and prevent overlapping skills. This problem will110

be called the “Toy Problem” and is discussed in section 4.2.111

4.1. Lunch Table Problem. With approximately two hundred students, there are 200! or112

∼ 3.9∗10374 ways to arrange the students. Therefore, it is not possible to fully calculate every113

permutation of students so that the optimal result can be found. Also, the only information114

available for every student is grade and gender. Gender alone is not a great optimization115

feature because of its binary nature, so we used both gender and grade.116

The subsets created with SA were significantly more diverse (according to SID) than those117

generated randomly. This distribution is expressed in Figure 1 and the means and compute118

time in Table 2.119

We achieved these results using a random solution for s0, a T0 of 1, a Tmin of 0.001, an120

α of 0.9, a β for use with the neighbor function of 45, and a kmax of 300. We set the weights121

(w1 and w2) to 0.5; that is to optimize grade and gender equally.122
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Table 2
SID Score and Compute Time for Lunch Table Problem

Method Random Simulated Annealing (SID)

Average SID Score (1000 runs) 0.0002 0.0016

Average Compute Time (in seconds, 1000 runs) 0.0052 168.78

Figure 1. Distribution of SID Score vs Method of Generation for Lunch Table Problem

4.2. Toy Problem. In this problem, the manager must partition one hundred employees123

into 10 subsets of equal cardinality. Each employee has three random integer quantifier values124

varying from 1 to 10. These values were set once and used for each run so to test the algorithm125

on the same random data set. Let’s call these quantifiers programming proficiency, language126

proficiency, and leadership skills.1127

Just like with the Lunch Table Problem, the SA generated subsets were significantly more128

diverse (according to SID) than their random counterparts. This distribution is expressed in129

Figure 2.130

We achieved these results using a random solution for s0, a T0 of 1, a Tmin of 0.001, an131

α of 0.9, a β value for use with the neighbor function of 25, and a kmax of 300. We set the132

weights w1 and w2 to 0.333 and w3 to 0.334. The goal was to weigh all quantifiers equally,133

1This data set can be found at https://people.eecs.ku.edu/∼g750g706/toy-set.csv
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Figure 2. Distribution of SID Score vs Method of Generation for Toy Problem

Table 3
SID Score and Compute Time for Toy Problem

Method Random Simulated Annealing (SID)

Average SID Score (1000 runs) 0.0019 0.0212

Average Compute Time (in seconds, 1000 runs) 0.0039 83.46

but there was a slight preference to quantifier 3: leadership skills.134

5. Conclusion. In the future, for the Lunch Table Problem, currently repeating tables are135

only considered in the initial random seed, which means that this feature may not be present136

in the outputted solution. Therefore, in the future, table repetition needs to be considered137

as a negative weight in the metric. Also, the current average compute time of 168 seconds138

could also be improved by optimizing the current implementation of the SA algorithm, such139

as decreasing the kmax value since this value almost directly correlates to compute time. In140

the Toy Problem, again compute time is much larger than what would be desirable and a141

more involved tuning of kmax could improve this compute time.142
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